HEAT EXCHANGERS

Industrial Heater QuoteIn general, heat exchangers are the devices used to exchange heat between same or different forms of matter through conduction, convection or radiation. Industrially, the term ‘heat exchangers’ is used for devices that assist in exchanging heat between two fluids at different temperatures without physically mixing them. For example, room or water heaters are used to heat the ambient air or water by exchanging heat between the heating element and the surrounding air or water respectively. Also, refrigerators or air conditioners have heat exchangers to exchange the heat and cool the surrounding medium. Likewise, they have diverse applications in wide range of fields such as automobile industry, food and beverage industry, nuclear power production etc.

There are several types of heat exchangers that are used in industries and could be mainly classified based on their design as

1.      Shell and Tube heat exchangers

Shell and tube heat exchangers are the most commonly discussed heat exchangers. They consist of shell and a tube where fluids at two different temperatures are circulated parallel (co-current), perpendicular (cross flow), or anti-parallel (counter-current) to each other. A typical double pipe heat exchanger consists of only one tube inside a shell and is shown in Figure 1. A tube can have multiple passes before exiting a shell depending on the requisite amount of heat load to be transferred.

2.      Plate  heat exchangers

These heat exchangers consist of several metal plates that are arranged together (brazed or connected by gaskets) such that hot and cold fluids pass through alternate plates. They are more compact in size than tube heat exchangers for the same amount of heat transferred between two fluids but suffer from the drawback of having limited utility at high pressures or temperatures. Usually, the maximum pressure and temperatures that can be used are 3MPa and 260°C, respectively. (Shah, 1994)

3.      Plate-fin/ Tube-fin heat exchangers

The exchangers are similar to the ones mentioned above except that the plates/tubes have fins attached to them. The fins provide extended surface area for the heat transfer and enhance further the quantity of heat transferred. The construction cost of these exchangers is higher than exchangers discussed earlier.
 
 

Figure 1: Schematic showing a simple parallel flow shell and tube heat exchanger.

Heat exchanger design

The amount of heat absorbed/released by fluids is represented by
 
where , and   are the flow rates of hot and cold fluids, respectively. Specific heats of hot and cold fluids are cph and cpc respectively while ΔTh and ΔTc are the absolute changes in temperatures between inlet and exit for hot and cold fluids, respectively. In shell and tube heat exchangers, amount of heat transferred per unit time, q is represented by (Holman, 2010),

where U is overall heat transfer coefficient, A is effective surface area for heat transfer, F is correlation factor and ΔTm is log mean temperature difference between two fluids.
Overall heat transfer coefficient depends on various properties such as type of exchangers. As well as physical properties of fluid such as density, viscosity etc, turbulence in flow, thickness of tubes/plates, thermal conductivity of the design material and fouling. For example, in case of a shell and tube heat exchanger overall heat transfer coefficient can be represented in terms of individual resistances to heat transfer on both inside and outside of the tube. In a simpler case, where U stays constant in the process, it can be represented as



where A, r and h represent total surface area of the tube, radius of the tube and heat transfer coefficient in the fluid, respectively. Suffixes o and i represent outside and inside of the tubes, respectively. L and k are the length of the tubes and thermal conductivity of the design material of the tubes, respectively. ΔTm, can be represented in terms of inlet and exit temperatures of fluids as
 
where Th1 and Th2 are the inlet and exit temperatures of hot fluid, respectively; while Tc1 and Tc2 are the inlet and exit temperatures of cold fluid, respectively. Value of correlation factor, F, depends on construction design of the heat exchangers such as number of shells or number of passes of tubes inside the shell of the exchangers and is equal to one for simple case of double pipe heat exchanger.
Apart from desired heat load, factors such as:
  • Construction cost
  • Design material cost
  • Pressure loss in fluid while pumping through the exchangers
  • Compatibility of tube/plate material with the fluids
all play a crucial role while designing the unit.
 

Maintenance in heat exchangers

Fouling in heat exchangers is a major factor which reduces performance of heat exchangers in due course by reducing the overall heat transfer coefficient. Fouling is the modification of surface of plates/tubes over time due to several factors. For example, corrosion, magnesium/calcium deposits or biological factors such as algae settlements. Mechanical cleaning, treatment of inlet water or circulating cleaning fluids are some of the methods used for maintenance of heat exchangers. Some design materials such as stainless steel or titanium are more resistant to corrosion while copper alloys reduce biological fouling, thereby having higher performance.

 Market Share/Demand

Technological advancement, increasing awareness of energy optimization techniques and emerging markets around the world. India and China, for instance, are greatly boosting the demand of heat exchangers. According to the research conducted by P&S market research (P & S market research, 2016), market size of heat exchangers was valued at 14.1 billion dollars in 2014 and is estimated to grow with a CAGR of 6.5 % during the period of 2015-2020 with chemical industry expecting the highest growth at CAGR of 9.2% and Europe being the biggest market for heat exchangers.
[1] Shah, R. K., 1994, Heat exchangers, in Encyclopedia of Energy Technology and the Environment, Wiley, New York, pp. 1651–1670.
[2] JP Holman, 2010, Heat Transfer, 10th Edition, McGraw Hill, New York.
[3] Global Heat Exchangers Market Size, Share, Development, Growth and Demand Forecast to 2020”, P&S market research.


 

Latest blogs

Common Industries that Wattco works with

Case Studies View All

5 Fundamental Rules for Designing Efficient Heat Transfers
Considering these basic rules for designing thermal heat transfers will expand a project’s product...
Read More..

A Review of Industrial Heaters: Oil and Gas industry Case Study
About Industrial Heating The industrial revolution has significantly contributed to the development ...
Read More..

Advantages and Limitations of Digital Control Panels for Industries
Digital control panels are widely used in industries to monitor and control system variables. Humidi...
Read More..

Air Duct Heaters
Air duct heaters are commonly used in the HVAC industry. They provide supplementary heat to the deli...
Read More..

Alternatives to Direct Immersion Heaters
  Although immersion heaters are most often the best possible solution for tank content heating, so...
Read More..

Wattco News View All

4 Advantages of Skid Systems in Industrial Heating Processes
Many industrial heating processes involve maintaining a consistent temperature in a vessel to protec...
Read More..

4 Common Causes & Solutions of Circulation Heater Fouling
If you have noticed a decrease in the efficiency of your circulation heater, the most common culprit...
Read More..

A Closer look at Circulation Heaters
Wattco manufactures and designs circulation heaters for maximum efficiency. As a result, these heate...
Read More..

A Closer Look at Immersion Heaters for Tanks
Heating storage tanks is an important application of electric immersion heaters. Tank heating is a p...
Read More..

A Closer Look At Load Banks
Load banks are essential for applications in a variety of industrial applications, especially for te...
Read More..

Most Popular Blogs View All